Investigation of Drag-Free Control Technology
for Earth Science Constellation Missions

Final Study Report
15 May, 2003

Submitted to:
NASA Earth Science Technology Office

Study Lead:
Jesse Leitner, Code 591
NASA Goddard Space Flight Center
Mission Engineering and Systems Analysis Division

Team members and contributors:
Scott Starin, NASA GSFC, Code 595
Melissa Fleck, NASA GSFC, Code 595
Bo Naasz, NASA GSFC, Code 595
Robert Fall, Honeywell Space Systems, Clearwater, FL.



I. Executive Summary

Drag-free control (DFC) is a concept that initiated in the late 1960’s and came to fruition in the
early 1970’s through several flight experiments conducted by the U.S. Navy. The experiments
were successful in validating the concept and the technology transitioned into the field of gravity
measurement and gravity wave detection for missions such as GRACE, Microscope, and LISA.
In all of these applications, the drag-free sensor acts as a precision instrument, very high in cost,
which enables the negation of the effects of non-gravitational forces acting on the vehicle
through simple feedback control. These forces include drag (the atmospheric force countering
the velocity direction of the vehicle), solar radiation pressure, and solar winds, so the DFC
expression certainly generalizes the use of the term “drag”. This study investigates a potential
deviation of the technology path for drag-free control, in particular one of low-precision and high
production (low cost per unit). Specifically, the fundamental question was whether DFC could
be applied to a constellation of spacecraft to simplify and reduce the cost of operations, as well
as improve performance. In this context, it was most important to consider the DFC sensor as
being positioned subserviently to the rest of the spacecraft design (i.e., the DFC sensor is not the
payload or instrument and henceforth cannot necessarily be positioned at the center of gravity of
the vehicle). The question of utility can be answered through a combination of system
complexity, fuel consumption, cost of the components (including technology development), cost
of operations, and performance improvement (in this case, reduced navigation errors).

Assumptions:

Initially, a laser altimetry mission was selected as a reference point for analysis. The mission
scenarios were provided by Dr. John Ries of the Center of Space Research at the University of
Texas at Austin. However, the altitudes of such a mission (examples being 500 km polar, 800
km, or 1300 km) are in the range where drag becomes less significant than other effects,
particularly those due to gravity. Analyses tied to any of these point designs would have guided
the effort to misleading conclusions about the applicability of DFC. Henceforth, the approach
was to identify the boundaries of applicability and then see how the applications map within the
boundary. Detailed spacecraft data were taken from the Global Precipitation Measurement
Mission (GPM) and the Microwave Anisotropy Probe (MAP) Mission, in terms of mass
properties, ballistic coefficient, and deviation of the center of gravity (cg) from original design.
While wide ranges of values were used for mass, ballistic coefficient, cg offset, and other
parameters, a reference point was used for nominal analysis that had the values of 2000 kg mass,
ballistic coefficient of 200 kg/m?, worst case cg offset of 10 cm, all of which were representative
of the GPM and MAP missions. Based on initial complexities in the sensor design, particularly
charge buildup and general risk of collision between proof mass and its chamber, the problem
was constrained to circular or nearly circular orbits only, with earth-pointing, three-axis
stabilized vehicles (the concept does not apply to spinners). The attitude control system is
assumed to be tolerant to attitude corrections of the vehicle without substantial added cost.
Lastly, for the constellation problem, all vehicles must be placed in orbits whose differential
effect is invariant to the J2 (Earth-oblateness) perturbation. The simplest approach for this is to
have them all at the same inclination.



Summary of Results from Technical Objectives

1.

Develop an optimal control correction algorithm to ensure uniform consumption of fuel
over the spacecraft constellation and subsequently determine the overall fuel
consumption for such an architecture. This simple compensation scheme is described in
Section V. Because there is little sensitivity to variations in the dynamics, the control
system required is quite simple for the low precision requirements for this concept and
linear dynamics of relative motion are always sufficient. The absolute level of fuel
consumption varies significantly with altitude. For an altitude of around 350 km, the
study showed that the AV per spacecraft is around 6 m/sec per month for the
continuously drag-compensated case with a ballistic coefficient of 100 kg/m”.

Compare the fuel consumption to a traditional approach of allowing each satellite’s orbit
to decay for 2-4 weeks and applying a A-V correction. The most significant benefit of
continuous, closed-loop drag compensation is realized for low altitudes and “non-
ballistic” spacecraft. From Table 3 on p. 15 in the report, for a 350 km altitude circular
orbit and a non-ballistic spacecraft (ballistic coefficient of 25 kg/m2), the continuously
drag-compensated system uses less than 50% of the fuel of that corrected once after
4 weeks. It is important to note that for the constellation problem, the spacecraft must be
in J2-invariant orbits (orbits that are not subject to differential perturbations due to J2
between spacecraft). Continuous compensation of J2 effects is substantially more costly
than periodic corrections. Therefore, in this study, the scope was confined only to J2-
invariant orbits. A sufficient condition for this would be the reasonable assumption that
all spacecraft are in the same inclination.

Compare and contrast this approach for handling the 30 spacecraft control problem to
traditional means based on extensions of single spacecraft control approaches. This
closed-loop approach for constellation control provides substantial simplification of
operations compared to traditional approaches. However, there is little, if any,
simplification or reduction in cost for ground-operations compared to the similar
approach of continuously compensating drag using closed-loop feedback of on-
board Global Positioning System (GPS) measurements. This assessment is based on
discussions with GlobalStar and Iridium operations personnel. It is, however, a
straightforward fact that the local control problem (i.e., the feedback control loop) is
much simpler for drag-free control as compared to the closed-loop around GPS
because no filtering is required (hence there is no susceptibility to single-event upsets or
other processing problems or constraints) and because the DFC system is only correcting
local small changes between spacecraft and individual proof mass (hence linearity of the
spacecraft-proofmass relative motion is preserved and the dynamics are simpler).

Determine a break-even point where the number in the constellation is large enough to
indicate that such an option is cost effective (even if the number is determined to be 1). 1t
is important to note that only a qualitative assessment can be stated because the
comparison can only be made to a few example cases. In comparison to traditional
means for operations, the drag-free system will begin to pay off for a system of
between 3 and 5 spacecraft in a high-drag environment with non-ballistic spacecraft.



A fair assumption would be three operators per spacecraft if they are operating as a
cluster or where careful attention must be paid to their coverage or relative separations.
In such a case, operations costs can total around $7 million/year whereas the DFC system
would run about $150k for all sensors, $450k/year for operations costs, and an estimated
$20 million total for non-recurring engineering costs (taken at the high end of the
estimated cost range from the Honeywell element of this effort). For less drag-intensive
scenarios the payoff can occur at 15-20 spacecraft as the number of operators per
spacecraft and complexity of operations for the non-DFC system go down. There are two
key caveats to this. First, it is important to keep in mind the need for J2 invariant orbits
between spacecraft. Second, while the navigation and control system will be much
simpler than that required for a system employing GPS feedback control, the overall
operations cost will not likely improve substantially (if at all) with the DFC system
compared to a system with closed-loop around GPS measurements, although the costs of
developing a robust feedback control system will be reduced.

5. Compare the effects of drag-based constellation decay vs. effects due to the earth-
oblateness perturbation. In fact, early in the effort (described in the first technical
section), two contradictory phenomena became clear — first, that continuous
compensation of drag is much more fuel-efficient than infrequent drag-makeup and
second, that periodic correction of J2 perturbations is more efficient than
continuous. With this contradiction and a standard desire to design formations and
constellations with minimal differential force effects, it was a simple choice to impose a
design constraint that the spacecraft orbits will not be pulled apart by the J2
perturbation. The lack of such a constraint would lead to wasteful fuel consumption
and it is unlikely that any direct science requirement would conflict with such a
constraint. The significant gravitational effect was due to the cg offset and this turns out
to be one of the major constraints of the DFC system.

Lastly, it is important to summarize the effects of eliminating drag on navigation errors when
used in conjunction with GPS and advanced GPS filters. Described in detail in Section VIII, it
was determined that a 30%-50% reduction in navigation error is achievable if drag were to
be removed from the equations of motion using an advanced, high-fidelity filter without ground
augmentation. Specifically a reduction from 6 m to 3 m in real-time on-board navigation error
can be achieved with the coupled GPS/DFC system.



II. Extended Summary of Observations:
The following list describes the conclusions and observations:

1.

The use of continuous control for drag makeup (as would be required for a DFC system)
is substantially more fuel-efficient than less-frequent periodic DV orbital corrections.
Perhaps this appears to be an obvious conclusion but corrections due to J2 perturbation to
the orbit are much more expensive when performed continuously as compared to
infrequent periodic corrections. This leads to the requirement that a DFC system be
considered only for constellations of satellites all in the same inclination, or more
generally, in J2-invariant orbits.

For characteristic spacecraft in 2000 kg class, at altitudes below 450 km, the force
required to correct the drag is less than that required to correct for the cg offset. Above
450 km, the mere employment of a DFC system doubles the amount of net perturbing
acceleration which must be compensated as compared to a spacecraft not employing
DFC. Based on conclusion 1, this only doubles the fuel consumption if compared to a
satellite whose drag is continuously compensated throughout the orbit. If the cg offset
were reduced to 1 cm, this altitude crossover only increases to about 600 km, and to 1
mm would bring it to just under 800 km. Therefore, the gravitational effects really begin
to take over at an altitude of about 500 km. The effect reverses itself at extremely high
altitudes (just below geosynchronous altitude), where solar radiation pressure begins to
dominate over gravity. The bottom line is that for a mission higher than about 450 km,
there must be substantial savings in operations cost to see a payoff for a drag-free system.

There is a nominal improvement of 30-50% in navigation error using GPS measurements
when drag is removed from the equations of motion as is the case for the drag free
system. For example the residual errors in absolute navigation are reduced from about 6
m down to 3 m assuming that the ionosphere is properly compensated, a good assumption
when an advanced filter is employed such as the GPS-Enhanced On-board Navigation
System (GEONS) from GSFC, or JPL’s GIPSY-OASIS. The comparison is made to on-
board, real-time determination accuracies, not to ground-enhanced, post-processed,
differential GPS approaches, which can substantially reduce these errors in a non-real-
time sense.

There is potential for substantial cost savings for very large constellations of spacecraft
with long lifetimes if they are in a location with substantial drag effects. The
determination of the payoff “knee-in-the-curve” is purely qualitative and it is based on
those missions that require substantial and frequent corrections due to drag (in low
altitude orbits) or solar radiation pressure (in very high altitude orbits). This can only be
determined based on empirical data from the few example large constellations that exist
(or existed), such as GPS, GlobalStar, and Iridium. For the case of the GPS constellation,
the spacecraft are in very stable orbits, at high altitudes, and the same inclinations. Thus
the corrections to orbit are due to SRP and they are performed approximately once per
month. Eliminating the SRP would not substantially change the operations level of effort
as most of the ground-based monitoring is for the purpose of monitoring and dealing with
anomalies, with less frequent orbit corrections. The GlobalStar constellation has 48



spacecraft at 1400 km altitude with GPS on-board. GPS provides excellent time and
navigation service and henceforth the operations are simple. Each spacecraft has an orbit
correction (mainly due to SRP and minimal drag) about once every two months. The
staff required is minimal. The Iridium Constellation does not have GPS and henceforth
has a tremendous entourage required for ground support, even at the relatively high 780
km. A significant amount of this ground support is dedicated to both time corrections
and orbit determination and orbit correction.

One of the biggest problems associated with long-term behavior of a constellation or
formation is the propagation of errors in the initial conditions, in particular, the semi-
major axis. The DFC constellation will still be subject to such errors and will require on-
board or ground-based sensors to deal with the problem.

Substantial effort in optimization will be required for fuel balancing if there is significant
differential drag among the spacecraft.

The primary competitor to this approach for autonomous control for a constellation
would be a closed loop control system using GPS as a sensor. If the mission has
navigation (orbit determination or position measurement) requirements, then ground
tracks, GPS, or another sensing approach will be necessary in addition to the DFC sensor.
However, in either case, the closed loop architecture will be much simpler for the DFC
system as compared to a closed-loop GPS-based system because there is no reliance on
complex filtering schemes or the availability of GPS and the feedback is based on a
simple measurement (or set of measurements) internal to the system. Likewise, such a
simple control system will not be sensitive to single-event upsets, latch-ups, or other
processor related issues (other than a complete failure or shutdown of the control
computer).

While the reference spacecraft given primary consideration is a rather large 2000 kg
spacecraft with ballistic coefficient of 200 kg/m?, strong consideration was given for
microspacecraft (200 kg and less) applications. Unfortunately, there is no consistent set
of statistics for microspacecraft ballistic coefficients. The certainties are that (1) the
values are virtually always less than the maximum coefficients for large spacecraft, (2)
there is generally little variation between the maximum and minimum values for the same
microspacecraft, and (3) for large spacecraft there is frequently substantial variation
between the maximum and minimum values. On the one hand, for the microspacecraft
problem, all of the components are packed into a much smaller volume, henceforth with
smaller wetted area for a common mass. However, it is clear after participating in
spacecraft design studies for microspacecraft that one of the biggest problems is a
minimum requirement for exposed area for body-mounted solar arrays to generate
sufficient power. With this constraint adjoined with that of a trend of reduced spacecraft
component mass, we can expect much smaller ballistic coefficients for future
microspacecraft. This is not, in general, a good thing, but it does give promise for the
DFC application. Furthermore, we can expect significant reduction in “travel” of the
center of gravity, feasibly down to one centimeter. Henceforth, given long-term



projections for microspacecraft, the domain of application can be raised as high as 700
km altitudes.

9. Viability of this approach depends on large numbers in more ways than one. In the
conclusions above, it is pointed out that, operationally speaking, payoff occurs when the
number of spacecraft brings operational complexity to into a substantially challenging
realm. From a commercialization standpoint, this problem becomes even more extreme.
Since no low-cost DFC sensor exists today, nor one designed for long-life, much
technology must be developed. Without plans for development in the dozens, possibly
the hundreds, the technology will not be affordable on a per-spacecraft basis.

ITII. Program Background, Scope, and Objectives

Typical Low Earth Orbiting (LEO) missions for the Earth Science (ES) Enterprise apply
significant ground resources to orbit determination, prediction, and correction (or stationkeeping)
tasks. The most uncertain part of solving the ground-based and on-board LEO orbit
determination problems is the prediction of atmospheric drag levels. Moreover, atmospheric
drag forces that produce orbit decay can vary significantly from day to day and this uncertainty
demands increased spacecraft tracking and detailed orbit modeling, determination, and analysis
to determine the vehicle positions as well as to control it with periodic propulsive maneuvers.
Elimination of drag from the spacecraft flight dynamics equations of motion reduces the orbital
decay problem to gravity-induced perturbations that are well known and can be compensated for
with appropriate analysis.

This study has evaluated a closed-loop control system architecture concept that provides
precision orbit determination/maintenance capabilities needed for future ES LEO constellation
and, in some cases, formation-flying applications. This study was to evaluate whether a drag-
compensation system could provide the following benefits to a LEO spacecraft constellation:

o Compensate drag effects on spacecraft to prevent orbit decay.

e Help maintain constellation elements within their “constellation or formation tolerance
parameters.”

e Reduce, and in some cases eliminate, mission downtimes required to perform ground-
initiated A-V orbit corrections.

e Reduce uncertainty from the navigation, or orbit determination, problem to allow precise
position knowledge.

o Simplify station-keeping of large constellations, including limiting the amount of
manpower required to control a constellation (the GPS constellation would be a good
reference problem) and reduce reliance on complex collision avoidance algorithms.

Prior work in this area has centered around the single spacecraft drag-free control (DFC)
problem and has involved building the spacecraft around the center, in a sense eliminating one of



the biggest system level challenges in developing such a system. Therefore, this effort had two
primary unique foci: (1) start from the ground up with the fundamental affects of placement of
such a sensor without confining it to the vehicle cg (henceforth, so that the approach will be
applicable to general classes of missions without applying complex constraints on mass
distributions which can never be met) and (2) identify the feasibility, utility, affordability, and
applicability for substantially simplifying the constellation maintenance problem for medium —
large constellations by employing a DFC system on each spacecratft.

Scope

There were two primary goals of this study. The first was to answer the question: What degree
of orbit precision improvement can be obtained by the application of a drag-compensation
system such as the one described above, and how will this improve the performance of ES
missions? The second was to answer: How substantially can the constellation management
operational infrastructure (number of personnel required, the frequency of A-Vs required among
the constellation, etc.) be reduced by such a system?

To understand potential benefits of the drag-free concept this study was to:
1. Perform an assessment to determine the type/class of ES missions that would benefit the
most from drag-free technology.

2. Perform trades to identify the most advantageous drag-free system architectures, define
performance requirements for each architectural ‘case’, and compare the drag-free approach
with alternative large-scale approaches for constellation control.

3. Evaluate the technical feasibility and cost of outfitting drag free technology to “reference
spacecraft” for the mission ‘cases’ identified in (1).

4. Perform an assessment of cost/benefit ratio performance of the drag-free technology used
alone vs. alternative or complementary configurations of drag compensation. For this, each
of the approaches anticipated requires estimation algorithms that have unique drag-dependent
terms. To do this comparison, we will use ES missions ‘cases’ (e.g. an altimetry mission,
and a multi-spacecraft interferometric synthetic aperture radar (SAR) mission) and use their
requirements as drivers for the analysis

Study Approach

Initially in this study, the approach was to apply DFC methodology to some selected mission
concepts deemed as appropriate use cases. However, during the initial formulation of the
governing equations, it became clear why the multi-spacecraft DFC problem holds some very
unique issues relative to the single spacecraft version. Aside from differential drag effects which
are difficult to model realistically and which can lead to non-uniform fuel consumption
throughout the constellation, the differential J2 (Earth-oblateness) effect can cause a secular



decay of the constellation which would be too fuel intensive to correct. This is not unique to a
DFC-based constellation and requires that standard methods be used in the constellation design
such that the relative positions of the spacecraft are not affected by J2 (aka, J2-invariant orbits).
The simplest example is the case where all spacecraft are at the same inclination.

High-fidelity simulation models have been developed that incorporate vehicle dynamics
including relevant perturbations, drag-free sensor dynamics and characteristics, thruster
dynamics and characteristics, and other relevant quantities. Models are set up parametrically to
allow technology and performance trades. Honeywell was tasked the affordability question
throughout this study, based on development costs and commercialization potential. Their
contribution is summarized in the Appendix.

A drag-free sensing and control architecture will be designed which is optimized for large
spacecraft constellations but applicable to single spacecraft missions as well. Low-level control
laws have developed based on classical control methods.

The sensing and control architecture has been integrated into the models for each of the two
mission concepts and simulated for several scenarios within each mission framework.

The first step towards analysis of the problem has been to establish the most basic analytical
foundation for the implementation of the drag-free sensor. While it may appear mundane, this
analytical foundation is crucial to developing a realistic assessment of the implementation of a
DFC architecture. Since all past implementations of DFC technology have involved the design
of a spacecraft around the drag-free sensor, many of these details have been ignored. While it is
feasible to design a constellation around a DFC concept, it is not feasible to design a spacecraft
around a DFC sensor, because there is no scientific, operational scenario where the DFC sensor
will be the “payload” and such a sensor must be a secondary, supporting device, not the center of
attention. Henceforth, Section V details some of the historical work as well as our establishment
of the core analysis for practical implementation of a DFC system. It begins to draw the
boundaries of applicability for a DFC system under the real constraints, including the fact that
during the design and development process, a spacecraft center of gravity (cg) will move
substantially and it is not feasible to require that such a sensor be positioned at the cg. Therefore,
a key element in the analysis is the understanding of what the impacts on cg offset will be.

Technical Objectives

1. Develop an optimal control correction algorithm to ensure uniform consumption of fuel over
the spacecraft constellation and subsequently determine the overall fuel consumption for
such an architecture.

2. Compare the fuel consumption to a traditional approach of allowing each satellite’s orbit to
decay for 2-4 weeks and applying a A-V correction.

3. Compare and contrast this approach for handling the 30 spacecraft control problem to
traditional means based on extensions of single spacecraft control approaches.

4. Determine a break-even point where the number in the constellation is large enough to
indicate that such an option is cost effective (even if the number is determined to be 1).



5. Compare the effects of drag-based constellation decay vs. effects due to the earth-oblateness
perturbation. This will help to establish for which orbital altitudes and inclinations the drag-
free method has substantial payoff.

IV. History and Future of Drag-Free Control

Drag-free Control of a spacecraft was initially proposed in the 1960’s and is discussed
extensively by Lange.! A free-floating proof mass is enclosed within a spacecraft, isolating it
from external disturbance forces such as atmospheric drag and solar radiation pressure. Under
ideal conditions, internal disturbance forces can be ignored, and the orbit of the proof mass will
depend only on gravitational forces. Using small thrusters, the spacecraft can be forced to follow
the orbit of the proof mass, thus counteracting any non-gravitational disturbance forces.

The first drag-free control system was flown in 1972 as part of the Navy’s TRIAD mission.” The
purpose of this experimental mission was to improve the predictability of spacecraft navigation
by eliminating external disturbance forces on the spacecraft. To that end, a 3-axis Disturbance
Compensation System (DISCOS) was developed and tested on TRIAD. A single-axis version of
the TRIAD DISCOS was subsequently used on another Navy spacecraft, NOVA-1.* The
purpose of NOVA-1, like that of TRIAD, was to improve the predictability of the spacecraft
ephemeris. Additional uses for drag-free control have been proposed and include gravitational
field measurement (Gravity Explorer Mission), equivalence principle testing (Gravity Probe B),
and gravitational wave measurement (LISA).* It is important to note that in the context of Space
Science missions such as LISA and GPB, the concept of “drag-free” takes a broader context in
that drag now refers to solar radiation pressure, solar winds, and other such external pressure
effects that do not necessarily act against the vehicle velocity.

Because of the stringent acceleration requirements on the drag-free missions currently in design
or operation, it is very important to minimize errors due to internal disturbances such as mass
attraction, radiation pressure, magnetic field gradients, and electrostatic charge. Therefore, in
each of the drag-free spacecraft designed to date, the spacecraft was designed around the drag-
free sensor package. In essence, the drag-free sensor package is the principle spacecraft
payload.* Designing the spacecraft in this manner helps to minimize the internal disturbance
forces, which allows the proof mass within the drag-free sensor to follow an ideal, gravitational
orbit very closely, thus allowing for better elimination of the external disturbance forces acting
on the surrounding spacecraft without a substantially challenging sensing problem. The
disadvantage of this method of design is that it results in a higher degree of difficulty in
designing the spacecraft. Any small change in the hardware, for example, can result in a shift of
the spacecraft center of mass. This shift of the center of mass can then result in an unacceptable
bias of the drag-free sensor. The effects of a center of mass shift on the drag-free sensor are
discussed later in this paper.

Despite the difficulties in designing a drag-free spacecraft, drag-free control is still a desirable

means of spacecraft control in certain cases. In low Earth orbit, atmospheric drag causes the
greatest uncertainties in predicting spacecraft ephemeris. The continuously varying atmospheric
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drag levels require increased spacecraft tracking in order to accurately predict spacecraft
location. In addition, periodic propulsive maneuvers must be performed to counteract the effects
of drag on the spacecraft orbit. If the effects of drag on the spacecraft orbit can be autonomously
counteracted through the use of a drag-free control system, the uncertainty of atmospheric drag is
essentially eliminated from the spacecraft flight dynamics equation. With the elimination of
drag, the main perturbations acting on the spacecraft orbit are the perturbations due to the Earth’s
gravitational field, which are easily predicted.

As was mentioned before, the difficulty in designing the current drag-free spacecraft occurs
because of the stringent acceleration requirements for the various drag-free missions. With
looser requirements, it could be possible to design a simple, drag-free system that can be added
to a LEO spacecraft to enable autonomous orbit control. The drag-free sensor continuously
monitors the position of the proof mass with respect to the surrounding spacecraft. Based on the
proof mass position, small thrusters are fired to move the surrounding spacecraft such that the
proof mass stays centered within the spacecraft. This control of the proof mass position
continuously counteracts the effects of drag on the spacecraft orbit by forcing the spacecraft to
follow the proof mass orbit. This continuous drag compensation decreases the spacecraft
tracking required, thus reducing the number of people needed for ground station staffing. It also
allows for fewer large orbit correction maneuvers, which reduces the need for extra staff to plan
and execute periodic orbital maneuvers.

In order to determine the viability of continuous drag-free control, the benefits mentioned above
must be weighed against the costs. This section of the report discusses the theoretical cost of
using continuous drag-free control to compensate for the effects of drag on a spacecraft in low
Earth orbit. This cost will be considered in terms of cumulative orbital velocity changes, or AV,
and is in comparison to a traditional approach of allowing the spacecraft’s orbit to decay for two
to four weeks and applying a larger AV correction.

V. AV Simulation

Of interest in this study is the total AV required for continuous drag compensation as compared
to the AV required for periodic drag compensation. To determine the AV requirements, a
simulation was created using a combination of MATLAB and the Astrogator module within
Satellite Tool Kit (STK). The Mission Control Sequence (MCS) of the simulation consists of the
Spacecraft Initial Conditions, the Propagator, and a Target Sequence. Within the Target
Sequence is an Impulsive AV Maneuver. The Propagator includes two-body gravitational effects
and the Jacchia-Roberts atmospheric density model. The simulation, therefore, calculates only
the AV required to counteract atmospheric drag effects. The Jacchia-Roberts parameters chosen
are daily and average F10.7 values of 150 W/m® and a geomagnetic index number of 3.0. The
F10.7 values were chosen to represent an average solar flux.°

At the beginning of each simulation case, MATLAB updates the spacecraft orbital elements in
STK using initial conditions stored in the MATLAB script. STK propagates the spacecraft orbit
over a time step, At. The Target Sequence then calculates the AV required, when applied along
the spacecraft velocity vector, to raise the spacecraft semi-major axis to within 10 cm of its
original value. Only the velocity vector is targeted because atmospheric drag always acts
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Table V-1: Summary of initial spacecraft parameters for
the simulation.

Initial Spacecraft Parameters
Value/Range
Altitude Varies 350 - 700 km
Inclination Varies 0 -60 deg
Ballistic Coefficient | Varies |25 -200 kg/m”2
Eccentricity Fixed 0
RAAN Fixed 0 deg
Argument of Perigee | Fixed 0 deg
True Anomaly Fixed 0 deg

opposite the spacecraft velocity. The Impulsive Maneuver then applies the AV along the
spacecraft velocity vector. It is assumed at this point that the AV can be applied exactly along
the velocity vector, and therefore there are no AV losses due to attitude error. MATLAB then
takes the spacecraft orbital elements at the end of the Impulsive Maneuver and uses them to
update the orbital elements in STK. MATLAB also records the calculated AV. This cycle
continues until the spacecraft has been propagated through a total of four weeks. A flowchart of
the STK/MATLAB simulation can be seen in Figure V-1.

A total of four parameters affecting drag were varied to establish the different simulation cases
studied: orbit altitude and inclination, spacecraft ballistic coefficient, and the time between AV
maneuvers. Table V-1 shows a summary of the initial spacecraft parameters for the simulation.
The ballistic coefficient is the spacecraft mass divided by its cross-sectional area times the drag
coefficient. A drag coefficient of 2.0 was assumed for all cases. Values for the ballistic
coefficient were chosen based on information from past spacecraft’ and are assumed to be
constant throughout the four-week propagation/AV maneuver cycle (i.e. mass and cross-sectional
area of the spacecraft are assumed to be constant).

The simulation time steps, or the time between AV maneuvers, varies from four weeks to one
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Figure V-1: Flow chart of STK/MATLAB Simulation
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Figure V-2: AV curves for all altitudes at an inclination of 30° and a
ballistic coefficient of 100 kg/m®

hour. The four-week and two-week time steps are representative of the time between traditional
periodic orbit correction maneuvers. The one-hour time step is more representative of
continuous drag compensation. Additional time steps tested were one week, four days, two days,
one day, twelve hours, and six hours. These intermediate time steps were simulated to show the
general trend in the AV required as the control approaches continuous compensation.

Simulation Results

Recall that varying three spacecraft parameters and the time between AV maneuvers were used
to specify the different cases of the simulation. A total of 448 cases were run for each of the nine
different AV time steps, for a total of 4032 cases. Based on the data, several overall trends can
be noted. First of all, in all the cases simulated, there is no extra AV required for the one-hour
AV maneuvers as compared to the two or four-week maneuvers. In fact, in some cases there is
even a significant savings with the one-hour maneuvers.

The cases with the largest AV savings are at low altitudes and low ballistic coefficients. This

Table V-2: Comparison of AV required at
different altitudes and ballistic coefficients.

AV Comparison for Different Ballistic
Coefficients (m/sec)

BC (kg/m?) 1 Hour AV Separation
25 24 .64 213 0.13
100 6.19 0.53 0.03
200 3.10 0.27 0.02
350 500 700
Altitude (km)

Inclination = 30 deg
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result is not surprising since the acceleration due to atmospheric drag increases proportionally
with a decrease in ballistic coefficient and increases exponentially with an increase in
atmospheric density, which increases exponentially with decreasing altitude. The altitude of a
spacecraft with a low ballistic coefficient in a low orbit will decrease at a faster rate than a
spacecraft with a higher ballistic coefficient in a higher orbit. Therefore, it will require less total
AV to raise the semi-major axis after every hour, for four weeks, than it will to raise the semi-
major axis at the end of four weeks. At higher ballistic coefficients and higher altitudes, this
effect is reduced, and therefore AV savings decrease.

At altitudes above 400 km, there does not appear to be any significant difference between the AV
required for the four-week maneuver and for four weeks of one-hour maneuvers. This trend
holds true at all inclinations and ballistic coefficients and can be seen in the example cases in
Figure V-2. The slopes of all lines above 400 km are approximately zero, indicating little to no
extra AV cost for continuous drag compensation.

Another interesting trend in the data is the effect of the ballistic coefficient on the AV curves.
Recall that the ballistic coefficient is the ratio of the spacecraft mass to its cross-sectional area
times the coefficient of drag, and as such has a direct effect on the total amount of AV required.
The effect of a lower ballistic coefficient is an increase in drag. This increase in drag then
requires larger amounts of AV for drag compensation. This trend holds true at any altitude and is
represented in Table V-2.

Of interest is also the effect of the ballistic coefficient on the slope of the AV curve. As can be
seen in Table V-2, at altitudes of 400 km and above, at any inclination, the slopes of the AV
curves for different ballistic coefficients are approximately equal. This trend implies that the
cost differences between periodic and continuous drag compensation are similar for all ballistic
coefficients. At lower altitudes, the slopes of the AV curves vary from one ballistic coefficient to
another, implying that different ballistic coefficients have different effects on the AV cost
between periodic and continuous drag compensation. This trend can be explained in that drag
lowers the altitude of a spacecraft with a low ballistic coefficient at a faster rate than a spacecraft
with a high ballistic coefficient. So, as the time between AV maneuvers decreases, the total AV
required after four weeks will decrease at a faster rate for a spacecraft with a low ballistic
coefficient than for a spacecraft with a high ballistic coefficient.
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The final interesting trend from the simulation data is the effect of orbit inclination on the AV
cost curve. The initial inclination of the spacecraft orbit appears to have a very slight effect on
the total AV required for drag compensation and no effect on the slope of the AV curve. This
trend holds true for any given altitude and ballistic coefficient. This relative insensitivity to orbit
inclination is not surprising considering that drag depends predominantly on spacecraft altitude
and exposed area. The slight increase in AV required at low inclinations can be explained by an
increase in average atmospheric density for a given orbital semi-major axis, which is associated
with the oblateness of the Earth at the equator.

In summary, Table V-3 shows the ratio of Continuous/Periodic AV required, per year, for drag
compensation of a spacecraft at various altitudes and ballistic coefficients. As was pointed out
earlier, the inclination of the spacecraft orbit has little effect on the amount of AV required;
therefore, these approximations are valid for all inclinations. The periodic compensation in this
calculation is taken to be every four weeks.

VI. Errors due to Center of Gravity Assumption

A potentially significant source of error in the simulation data comes from the assumption that
the proof mass is located at the center of gravity (cg) of the spacecraft. In actuality, it is not
always possible to place the proof mass exactly at the spacecraft cg. The location of other
components or component wiring issues could require that the proof mass be offset slightly from
the spacecraft cg. In addition, the spacecraft cg has a tendency to shift throughout a mission
from fuel usage, outgassing, etc. The following subsections will discuss in detail the effects of
small offsets of the proof mass from the spacecraft cg.

The flight heritage, and future flight planning, of drag-free technology has been in missions for
which the proof mass sensor is a primary function. Therefore, the goal of maximizing efficacy
of the drag-free sensors has dominated design considerations. In particular, these missions have
endeavored to place the proof mass target point very close to the spacecraft cg. In his treatment
of the drag-free satellite concept in 1964', Lange mentions the bias caused by a cg offset, and

Table V-3: Summary of the ratio of Continuous/Periodic AV requirements, per
year, for drag compensation of a spacecraft.

Ratio of AV Requirements: Continuous / Periodic Drag Compensation

Altitude (km)

Ballistic
Coefficient| 350 400 450 500 550 600 650 700
(kg/m?)
25 047 0.83 0.93 0.97 0.99 0.99 1.00 1.00

50 0.78 0.92 0.97 0.99 0.99 1.00 1.00 1.00

75 0.86 0.95 0.98 0.99 1.00 1.00 1.00 1.00

100 0.90 0.96 0.98 0.99 1.00 1.00 1.00 1.00

125 0.92 0.97 0.99 0.99 1.00 1.00 1.00 1.00

150 0.93 0.97 0.99 0.99 1.00 1.00 1.00 1.00

175 0.94 0.98 0.99 1.00 1.00 1.00 1.00 1.00

200 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00
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approximates the bias magnitude as g (gravity at the Earth’s surface) times the ratio of the cg
offset to the orbit radius, which ratio he gives as 10'°~107"". This estimate would indicate a
displacement of 0.1-1 millimeter for a 700-km altitude; this implies the spacecraft has been
carefully designed around the drag-free sensor package. Lange points out that, for low-Earth
orbits, the drag acceleration averages 10 °~107g, and so is much greater than that required
because of the cg offset.

Lange was concerned with showing that drag-free control was a feasible concept, and therefore
could expect a careful design process to minimize the displacement of the proof mass from the
satellite cg. However, some current efforts have as a goal the expansion of drag-free sensor
technology to multiple uses. For a generic drag-free sensor to become a practical addition to the
spacecraft design toolbox, the placement of the sensor would need to be much less restricted than
the sub-millimeter, or even the centimeter level, allowing the sensor to be used in missions
where the drag-free component is not the primary driver of design considerations.

In this paper are discussed the effects that may be expected if a generalized drag-free sensor is
placed some distance away from the spacecraft cg. The proof mass will follow a relatively
unperturbed gravitational trajectory. If the proof mass enclosure were placed at the spacecraft
cg, then the gravitational trajectory of the spacecraft would be identical to that of the proof mass.
All propulsive effort would go to achieving and maintaining a drag-free state; this effort would
be necessary whether drag-free technology were used or not. However, a separation between the
proof mass and the spacecraft cg can cause a relative acceleration between the two bodies due
solely to gravity. This acceleration would have to be countered in addition to the drag forces,
and so maintaining function of the drag-free sensor would require additional propulsion that
would not be needed if the drag-free sensor were absent.

This cg offset effect occurs even in the strictly Keplerian, two-body dynamics, and it is unrelated
to the microgravity (i.e. self-gravity) bias accelerations mentioned above. In many cases, the
additional propulsive effort would be significant in relation to total propulsive costs; the
continuation of this paper explores the factors that will help determine when the additional costs
are restrictive.

The first-order effects of cg offset are easily derived from elementary force-balance principles,
but their formulation is dependent upon the spacecraft orbit/attitude profile, e.g. inertially fixed,
Earth-pointing, efc. Lange provides an approximation for the additional force required to
maintain a cg offset. What follows here is a more specific derivation of the first-order effects on
an Earth-pointing satellite in a circular orbit. This derivation may be modified to suit other
orbit/attitude profiles or adapted to allow 6-degree-of-freedom dynamical modeling. A spherical
Earth with gravitational constant & and perfect attitude/orbit maintenance are assumed.

Consider a free-floating proof mass (index P) in a circular orbit of radius, Rp, with circular orbit
velocity,

ve= M

The host satellite (index .§) maintains positioning such that the proof mass is located at the center
of its sensor cage, where the sensor cage is offset below the spacecraft cg by a radial
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displacement, d. Due to the Earth-pointing attitude profile, the spacecraft cg keeps the same
angular rate as the proof mass, but follows a circle of radius,

Ry =R, +d. (2)
To maintain that angular rate, the spacecraft must have a greater linear velocity than the proof
mass, given by

Ry  R,+d

Vg =—V Vp. 3

N RP P RP P ( )
However, the circular orbit that the satellite is following has a different Keplerian circular
velocity associated with it:

y7,

Vcircular RP +d * (4)
This velocity is less than that which the satellite must maintain to avoid contacting the proof
mass. To remain in circular orbit at super-circular velocity, a constant acceleration must be
applied in the radial direction so that the centripetal acceleration of the satellite guides it along
the correct trajectory. This acceleration, 4a, is given by subtracting the gravitational acceleration,
ag, from the necessary centripetal acceleration, a.:

2
v H
Aa=a,—a,=—"--"—. (5)
4 RS RSZ
The fact that any displacement, d, must necessarily be much smaller than the orbit radius implies
R = Rp = Rs. Substituting from Equations 8—10 and keeping only the first-order terms in d gives

the simplified expression
3
Aa = ,u3d . (6)
R
This equation approximates the additional acceleration, beyond any used to cancel drag and
similar effects, required for an Earth-pointing satellite to follow a proof mass with a radial cg
offset. Other potential displacement-plus-dynamics combinations are simple to analyze. If the
displacement is along the velocity direction, then to first order the proof mass is in the same orbit
as the spacecraft with a different true anomaly, so there are no strong effects. If the displacement
is in the cross-track direction, the expression is similar, with the multiplier of 3 changing to V2:

And, if the attitude profile is inertial, instead of Earth-pointing, the acceleration in Equation 6 is
reduced by a factor of two-thirds, and the effect over a single orbit is sinusoidal in the inertial
frame, with an orbit average equal to zero. However, to be able to ignore the effect, the cg
would have to be inside the sensor cage, with enough clearance that the proof mass could revolve
about the cg at distance d. Since proposed sensing designs (e.g. capacitive or optical) may
require close proximity between the proof mass and its enclosure, such clearances would not be
feasible in those cases.

Aa

Implications of Center-of-Gravity Offset

The potential effects of cg offset are easy to calculate for any given mission, once the mission
design and integration has been completed and the mass properties determined. However, to
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place a drag-free sensor at the cg of a spacecraft by design, and have the cg be exactly where it
was intended at the end of integration requires considerable effort and expense. A cg offset
would require more fuel than the same mission with no drag-free sensor, and the fuel increase
would be proportional to the size of the offset. Fuel requirements are a major driver in early
design concepts, and the risk associated with possible cg offsets would become a factor weighing
against the use of drag-free sensing. Another consideration is that the use of fuel over a mission
lifetime will likely move the cg within the spacecraft, and the effects of the resulting offset must
be acknowledged as the basic structural design is being developed.

It should be recognized, however, that the cg-offset effects are limited to additional fuel
expenditures. In the case of other drag-free biases, the satellite may be led gradually to raise or
lower its orbit due to a constant bias force along the drag direction, as the proof mass is pulled or
pushed along the velocity direction. By contrast, the cg-offset effects do not act on the proof
mass at all, so though additional fuel is used, the proof mass orbit—and therefore the
predictability desired from drag-free control—is maintained.

An example of how a cg offset can affect a mission will provide better insight into the issue. The
TRIAD-1 satellite, launched in 1972 as part of the Navy TRANSIT program, provides a good
illustration of how cg offset can affect a mission.” The satellite experienced a small malfunction
in the deployment of its booms, resulting in one of two 2.7-meter booms being under-extended
by an estimated 1 centimeter; as a consequence, the proof mass null point was displaced radially
from the spacecraft cg. Therefore, when the satellite was flown in a closed-loop, drag-free
mode, the predominant observed disturbance was a bias in the radial direction of about 3—5 x 10
%g. as opposed to the expected maximum bias levels of about 10"'g from self-gravity and
electrostatic charging effects. The TRIAD-1 team did identify the problem as being due to cg
offset, but was “surprised” by the magnitude of its effect.

Comparison of Offset Effects with Drag

The deceleration of a satellite due to atmospheric drag is given by
ap =PV SZCB (8)

where p is the atmospheric density, vs is spacecraft velocity, and Cp is the ballistic coefficient.
Here, this ballistic coefficient is defined as the ratio

Cp = {vehicle mass}:{drag coeff. x drag area}.

It is well known that atmospheric density increases at an exponential rate as altitude decreases.
The drag force increases even more with decreasing altitude, since the orbital velocity increases
as a satellite approaches the Earth. From Equation 13, it may be seen that the idealized cg offset
effect also increases with decreasing altitude, but only as the cube of the orbit radius. Therefore
as altitude decreases, there is a crossover altitude for any given combination of ballistic
coefficient, Cp, and cg offset, d, at which the magnitudes of the two effects—drag and cg
offset—are equal. Thus, satellites above the crossover altitude would be spending more fuel for
compensation of their cg offset than for drag compensation. To illustrate the principle for an
Earth-pointing vehicle with Cz =100 kg/m* and d = 10 cm in the radial direction, the crossover
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altitude is just under 450 km (based on the mean densities provided by Larson & Wertz®). This
example represents a typical satellite. Smaller satellites tend to have smaller mass-to-area ratios,
and at the same time could more easily have the drag-free sensor close to the cg. A
microsatellite might therefore be better described by a C of 25 kg/m? and a cg offset d equal to
1 cm; such a satellite would have a crossover altitude of about 700 km.

As an example of a potential systems trade that this cg offset effect could drive, consider a
mission where the engineering determination is made that for a 400-km altitude and a Cp of
200 kg/m” (typical for medium- to large-sized satellites), the final offset must be small enough
that its effect is less than 5% of the drag acceleration. The maximum allowable radial offset
would then be about 5 cm. This is not as restrictive as it might first seem, as the sensor could be
placed on the front or back of the spacecraft, so long as the radial offset were less than 5 cm and
the cross-track offset less than 10 cm (from Eq. 14). This restriction is not prohibitive, but ample
consideration early in the design process would be necessary. Figure 1 illustrates the trade space
more fully by comparing the effects of drag with the additional acceleration due to cg offset for
several ballistic coefficients and cg offsets.

As the cg offset d increases, so will AV, Table VI-1 shows some calculated values for #

and AV o0, assuming a positive 10 cm offset. The final two columns show the AV calculated by
the simulation assuming ballistic coefficients of 25 kg/m® and 100 kg/m®. As can be seen in the
table, the errors due to an offset proof-mass become increasingly significant as drag forces
decrease sharply with increasing altitude and as the ballistic coefficient increases. In these cases,
it becomes just as expensive to compensate for the errors due to proof-mass offset as it is to
compensate for drag on the spacecraft.
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Table VI-1: Estimated errors due to proof-mass offset from

the spacecraft center of gravity. The final columns show the

AV calculated in the simulation at ballistic coefficients of 25
kg/m® and 100 kg/m* as a comparison.

Errors for a 10 cm Proof Mass
Offset Along Spacecraft CG

Vector
Acceleration AV_sim | AV_sim
Altitude Error AV_error| (BC=25) |(BC=100)
(m/s/ (m/s/ (m/s/
(km) (m/s”2) 4 weeks)| 4 weeks) |4 weeks)

350| -2.618E-07 -0.633 53.607 7.060
400| -2.560E-07 -0.619 12.725 2770

450| -2.504E-07 -0.606 5.022 1.193
500| -2.450E-07 -0.593 2.207 0.541
550| -2.397E-07 -0.580 1.024 0.254
600| -2.346E-07 -0.568 0.494 0.123
650| -2.297E-07 -0.556 0.247 0.062
700| -2.248E-07 -0.544 0.129 0.033

Fuel Consumption Conclusion

In terms of AV cost, continuous drag compensation of a spacecraft in low Earth orbit is a viable
means of spacecraft orbit maintenance for certain cases. AV savings are most significant for
spacecraft with low ballistic coefficients in low orbits. Above altitudes of about 450 km, there is
little difference between AV costs for continuous and periodic drag compensation for any sized
spacecraft. At altitudes of 450 km and below, spacecraft with ballistic coefficients above 100
kg/m” show no extra AV cost for continuous drag compensation. However, at altitudes above
450 km, the errors due to proof mass offset from the center of gravity become significant for all
sized spacecraft. It becomes just as expensive to compensate for proof mass offset as it does to
compensate for drag. The closer the proof mass can be placed to the spacecraft center of gravity,
the higher the upper bound becomes on altitudes for which drag-free control is viable.

VII. Drag Free Control Effects on Navigation Accuracy

Introduction

To determine the effect of drag free control on navigation accuracy, we use an extended Kalman
filter to process simulated GPS pseudorange data for circular orbits with altitudes of 250km and
450km, both with and without drag. The orbits without drag represent spacecraft performing

drag free control about some proof mass. The orbits with drag represent a spacecraft that is either
uncontrolled or performing infrequent periodic drag makeup maneuvers.
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Procedure

1.

Generate truth trajectories using Al Solutions’ simulation tool, FreeFlyer, with 250km
and 450km altitude circular orbits, both with and without drag. For each of these four
scenarios, we generate 10 trajectories (total of 40 truth trajectories) with initial condition
based on a mean initial state (see Table VII-1) plus random initial position, velocity, and
drag coefficient offsets (see Table VII-2). Force modeling in FreeFlyer includes a 70x70
Earth gravity model, sun and moon gravitation, and Harris-Priester drag model with kg«
=200. The simulations assume a 3000kg spacecraft, with drag area of 15 square meters.
Generate measurement data (GPS pseudoranges) using the Measurement Data Simulation
Program, with measurement noise standard deviation of 2 meters, and with clock errors
from a Rubidium clock, and a TCXO clock (10 different random variable seeds for each
clock, see Table VII-3 for clock Allan Variance values), and no ionospheric delay (total
of 2 data sets for each trajectory)

Use an extended Kalman filter (the GPS Enhanced Onboard Navigation System, or
GEONS) to estimate the trajectories and evaluate the navigation accuracy (total of 80
GEONS runs).

Table VII-1 - Nominal state initial conditions (mean of J2000). The nominal drag

coefficient is 2.0, and the initial clock bias or drift are zero.

Position [m] Velocity [m/s]

Component 250km Orbit 450km Orbit  250km Orbit 450km Orbit

-6,430,735.4098  -6,624,652.2805 1,051.2894 1,051.2894
Y 675,809.5354 696,699.9419  -4,106.8807  -4,106.8807
Z -1,477,720.6130  -1,521,483.8354  -6,491.3925  -6,491.3925

Table VII-2 - State initial covariance

Position Variance [m*]: 1,000.00
Velocity Variance [m?*/s*]: 1.00
Drag Coefficient Variance: 0.01

Table VII-3 - Clock Allan Variance Parameters

Timing Standard  hy h,
Rubidium 2x10"° 2x10%
TCXO 2x 10 4x10%

Table VII-4 summarizes the GEONS navigation simulations. Each simulation is described by a
RunID with the following format: DF-abcde, where; the value of a describes the altitude of the
circular orbit, with / = 250km, and 2 = 450km; the value of b describes the drag model, with / =
drag free, and 2 = Harris-Priester drag; the value of ¢ describes the clock model used, with / =no
clock error (not included), 2 = Rubidium clock, and 3 = TCXO clock; the value of d describes
the ionosphere model, with / = no ionospheric delay, and 2 = ionospheric delay modeled in
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DataSim (we have omitted ionospheric delay for this study, as the bulk of the error introduced by
ionospheric delay can be removed by including an appropriate model in the filter); the value of e
varies to describe 10 random samples of the initial condition error, clock seed, and pseudorange
measurement noise seed.

Table VII-4 - Summary of GEONS simulations

Trajectory Clock Model
Altitude Drag Model Rubidium TCXO
RunID 250km 450km None Harris-
Priester
DF-1121* x x X
DF-1131%* X X X
DF-1221%* X X X
DF-1231* X X X
DF-2121*% X X X
DF-2131%* X X X
DF-2221%* X X X
DF-2231*% X X X

Results

Table VII-5 shows the navigation accuracy results for 80 GEONS simulations. The “mean of
mean” values are the calculated by averaging the mean error across the 10 sample ensemble at
each instance in time. The “mean of standard deviation” values are calculated by averaging the
standard deviation of the 10 sample ensemble at each instance in time.

Table VII-5 - Ensemble "mean of mean' and '""mean of standard deviation" values for
position, velocity, and drag coefficient estimation error

Position Error [m] Velocity Error Drag Coefficient Error
[em/s]

RunID mean standard mean standard mean standard

deviation deviation deviation
DF-1121%* 1.7547 0.8607 0.3586 0.1328 9.9947E-25 5.1372E-25
DF-1131*% 1.3620 0.2315 0.3289 0.0387 1.0462E-24 2.8001E-25
DF-1221*% 2.8656 1.7007 0.5982  0.2650 3.1664E-02  4.2359E-02
DF-1231*%* 1.8767 0.4545 0.4892 0.0788 3.4537E-02 4.2010E-02
DF-2121*% 1.2074 0.5652 0.1716  0.0731 -1.5035E-26 2.6093E-26
DF-2131* 0.8687 0.1833 0.1397 0.0216 -1.7628E-26  5.8094E-27
DF-2221% 2.5943 1.8747 0.4230 0.2915 1.0047E-02 4.5433E-02
DF-2231*% 0.6754 0.4080 0.1385 0.0576 1.0034E-02  4.5389E-02
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Table VII-6 - Ensemble "mean of mean' and '""mean of standard deviation" values for
clock bias and clock drift estimation error

Clock Bias Error [m] Clock Drift Error [m/s]

RunlD mean std mean std
DF-1121* 0.0392 1.5589 -1.5493E-05 1.1205E-03
DF-1131%* 8.2769 55.1900 1.0953E-01 1.4706E+00
DF-1221* 0.0102 1.8631 -2.3751E-05 1.1506E-03
DF-1231* 8.0856 55.1970 1.0877E-01 1.4705E+00
DF-2121* 0.0523 1.4937 -1.7745E-05 1.1150E-03
DF-2131* 650.2300 2085.0000 4.2443E-01 2.3419E+00
DF-2221%* 0.0840 1.8954 -1.2494E-05 1.1553E-03

DF-2231*  650.1900 2084.9000  4.2435E-01  2.3420E+00

Figure VII-1 and Figure VII-2 show clock and state error and standard deviation for a sample
simulation ensemble for the DF-1121* simulation runs (250km, no drag, Rubidium clock).
Figure VII-3 and Figure VII-4 show clock and state error and standard deviation for a sample
simulation ensemble for the DF-1221* simulation runs (250km, drag, Rubidium clock). The
standard deviation is plotted as a “three-sigma” value for this data.

Figure VII-5 and Figure VII-6 show clock and state error and standard deviation for a sample
simulation ensemble for the DF-2121* simulation runs (450km, no drag, Rubidium clock).
Figure VII-7 and Figure VII-8 show clock and state error and standard deviation for a sample
simulation ensemble for the DF-2221* simulation runs (450km, drag, Rubidium clock).

Navigation Error Conclusions

The GEONS simulation data shows 30-50 percent reduction in the position error when drag is
removed. Clock bias and drift estimates improve slightly with the removal of drag. An
unexpected result in this data is the improvement of the position and velocity error at the expense
of clock error when the Rubidium clock model is replaced with a TCXO clock. This may be a
sign of sub-optimal filter parameter tuning, and will be invested further.

23



Clock error +/ 36, RunDF-1121*

E d
3
m —
&
[5}
3
O - -
25
3 A\ ‘ ]
E 4 AP . _ )
= uq“\h& i W Y /
ol N ;-35',"-‘-"“4"/&\“‘('&.-‘... ’wﬁ‘.'& |
g I b I
3o AR ]
S
25
T T I I
oy 7
S - -
2 osf ——— o _
= T —
3 S = ]
o -05F S - 7 _
o : : I ‘_7:_& T R e |
0 5 10 T = 2]

time [hrs]
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Figure VII-6 - Position errors for GEONS simulation ensemble DF-2121*
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Figure VII-7 - Clock and drag coefficient errors for GEONS simulation ensemble DF-
2221*%
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IX.

Position Error +/- 3¢, RunDF-2221*
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Figure VII-8 - Position errors for GEONS simulation ensemble DF-2227*

Conclusions and Observations

The following list describes the conclusions and observations:

1.

The use of continuous control for drag makeup (as would be required for a DFC system)
is substantially more fuel-efficient than less-frequent periodic DV orbital corrections.
Perhaps this appears to be an obvious conclusion but corrections due to J2 perturbation to
the orbit are much more expensive when performed continuously as compared to
infrequent periodic corrections. This leads to the requirement that a DFC system be
considered only for constellations of satellites all in the same inclination, or more
generally, in J2-invariant orbits.

For characteristic spacecraft in the 2000 kg class, at altitudes below 450 km, the force
required to correct the drag is less than that required to correct for the cg offset. Above
450 km, the mere employment of a DFC system doubles the amount of net perturbing
acceleration which must be compensated as compared to a spacecraft not employing
DFC. Based on conclusion 1, this only doubles the fuel consumption if compared to a
satellite whose drag is continuously compensated throughout the orbit. If the cg offset
were reduced to 1 cm, this altitude crossover only increases to about 600 km, and to 1
mm would bring it to just under 800 km. Therefore, the gravitational effects really begin
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to take over at an altitude of about 500 km. The effect reverses itself at extremely high
altitudes (just below geosynchronous altitude), where solar radiation pressure begins to
dominate over gravity. The bottom line is that for a mission higher than about 450 km,
there must be substantial savings in operations cost to see a payoff for a drag-free system.

There is a nominal improvement of 30-50% in navigation error using GPS measurements
when drag is removed from the equations of motion as is the case for the drag free
system. For example the residual errors in absolute navigation are reduced from about 6
m down to 3 m assuming that the ionosphere is properly compensated, a good assumption
when an advanced filter is employed such as the GPS-Enhanced On-board Navigation
System (GEONS) from GSFC, or JPL’s GIPSY-OASIS. The comparison is made to on-
board, real-time determination accuracies, not to ground-enhanced, post-processed,
differential GPS approaches, which can substantially reduce these errors in a non-real-
time sense.

There is potential for substantial cost savings for very large constellations of spacecraft
with long lifetimes if they are in a location with substantial drag effects. The
determination of the payoff “knee-in-the-curve” is purely qualitative and it is based on
those missions that require substantial and frequent corrections due to drag (in low
altitude orbits) or solar radiation pressure (in very high altitude orbits). This can only be
determined based on empirical data from the few example large constellations that exist
(or existed), such as GPS, GlobalStar, and Iridium. For the case of the GPS constellation,
the spacecraft are in very stable orbits, at high altitudes, and the same inclinations. Thus
the corrections to orbit are due to SRP and they are performed approximately once per
month. Eliminating the SRP would not substantially change the operations level of effort
as most of the ground-based monitoring is for the purpose of monitoring and dealing with
anomalies, with less frequent orbit corrections. The GlobalStar constellation has 48
spacecraft at 1400 km altitude with GPS on-board. GPS provides excellent time and
navigation service and henceforth the operations are simple. Each spacecraft has an orbit
correction (mainly due to SRP and minimal drag) about once every two months. The
staff required is minimal. The Iridium Constellation does not have GPS and henceforth
has a tremendous entourage required for ground support, even at the relatively high 780
km. A significant amount of this ground support is dedicated to both time corrections
and orbit determination and orbit correction.

One of the biggest problems associated with long-term behavior of a constellation or
formation is the propagation of errors in the initial conditions, in particular, the semi-
major axis. The DFC constellation will still be subject to such errors and will require on-
board or ground-based sensors to deal with the problem.

Substantial effort in optimization will be required for fuel balancing if there is significant
differential drag among the spacecraft.

The prim